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ABSTRACT

The question of how to quantitatively characterize the wave functions in
disordered systems is examined. We discuss the following relevant quantities:
the phase cohereace length g, the localization length A, the amplitude
fluctuation lenath g, the participation ratio p and the fractal dimensionality
D. Various techniques for calculating these quantities are mentioned and
relevant results are presented.

INTRODUCTION

The electronic eigenfunctions in disordered systems are complicated
objects. Recent explicit calculations by Soukoulis and Economou [1] show that
the eigenfunctions have strong amplitude fluctuations of various spatial
extents. This is clearly seen in figure 1 where we plot the probability
density lcn|2 for a 2-d (squared) tight binding model of a disordered system
with diagonal disorder of total width W. Even for weak disorder (W=1) the
wave function has strong fluctuations and does not occupy the whole available
space. For the 2-d case we have independent evidence that all eigenstates are
exponentially localized but for weak disorder (W=1 for E=0) we expect the
localization length to be a~10%., Therefore the case shown in figure la is
like any extended state but it has all these strong fluctuations. As disorder
increases (figures 2b-2d) the wave function becomes localized within the size
of the system studied. Of course, even for these strongly localized
eigenstates there are strong fluctuations up to a length which is roughly
equal to A.
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As a result of these fluctuations only a fraction of the available space is
effectively utilized by the eigenfunctions.
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Fig. 1. Plot of the probability of finding a particle at site n, |cn|2, for a
50x50 square tight binding model with diagonal disorder of total width W. The
energy E = 0.45 and P is the participation ratio.

In contrast to these findings, ordinary transport theory is based upon
the assumption that the amplitude of the eigenfunctions is essentially
unaffected by the disorder, while the phase is randomized within a
characteristic phase coherence length, the so called mean free path 2. The
latter can be defined by the relation

Im - nj

<G (mn) > =Gy (myn) exp [- —7:—] , (1)

where Go(m,n) is the off-diagonal matrix element of the periodic Green's
function between the points m and n, and < G (m,n) > is the average value of the
same matrix element for the disordered system.” For weak disorder, g is given by

2= Jult (2)

where |u| is the magnitude of the velocity v = 3E(k)/M3k and t is the relaxation
time. In the weak scattering limit, where the assumption of a uniform amplitude
is supposed to be valid, the mean free path £ is the quantity which controls the
dc conductivity o9 [2,3]:

2
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In equation 3, d is the dimensionality of the space, and S is the area of the
Fermi surface (for d = 3), or the length of the Fermi line (for d = 2), or
So =2 (for d = 1).

As the disorder increases, the amplitude of the eigenfunctions ceases to
be uniform. As a result, the dc conductivity o does not coincide anymore with
the semiclassical expression oo given by equation 3. One expects intuitively
that o < ag, and that the difference og - o would increase as the amplitude
fluctuations become larger (in size and extent).

Characterization of the Amplitude

Localization length

It seems well established now that disorder may lead, if strong enough,
to eigenfunctions whose amplitide decays to zero for large distances.
Although there is no rigorous proof (except in 1-d), it is usually assumed
that the decay is exponential on the average. The characteristic length i,
which determines this exponential decay is called the localization length, and
is defined by the relation

<|¢(r)l>g"’exP['£]’asr"‘” (4)

where the symbol <>g indicates the geometric mean. The main effect of this
disorder induced localization is to make the T=0, dc conductivity o to
approach zero as the linear dimension of the specimen L approaches infinity

<o (L) >q ~ exp [- %E] ,as L » =, (5)

It has been convincingly demonstrated that in 1-.d disordered systems all
eigenstates (except some special pathological cases [4]) are exponentially
localized no matter how weak the disorder is [2,3]. It is widely believed that
the same is true for 2-d disordered systems, although proposals for a power law
localization have been advanced. On the other hand, for 3-d disordered systems
the prevailing belief is that for not so strong disorder the spectrum is
separated by critical energies termed mobility edges into alternating regions of
extended (= non decaying) and localized eigenstates. As the disorder increases
the regions of extended states may disappear altogether and the whole spectrum
may consist of localized eigenstates.

Fluctuation length &

For extended states in 3-d disordered systems a length & has been introduced
characterizing the spatial extent of the largest (in size? fluctuation. If the
eigenfunction is averaged over length scales equal to or larger than ¢, it would
look uniform. Obviously fluctuations are characterized not only by their extent
but by their magnitude as well. The latter can possibly be defined as the ratio
of an appropriately averaged maximum value of |¢(r)| over an appropriately
averaged minimum value of |¢(r)|. Very little attention has been given to the
question of the magnitude and its possible correlation with g. Preliminary
unpublished work by the authors of the present article based on the potential
well analogy [5] indicates that the magnitude of the largest fluctuation equals
g/a' where a' is comparable to the interatomic distance., This simple result
Jeads to a reduction of the conductivity according to the formula

[}

a
a=0,2 . (6)
0%
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The £ dependence of equation 6 coincides with the predictions of the
scaling theory and the field theories (for a brief review see ref. [30.

Since localized states exhibit considerable fluctuations before
eventually their amplitude becomes negligible, a legitimate question to be
raised is how to characterize these fluctations. Although this question has
not been examined seriously, it is usually assumed that for localized states
the role of £ is played by A. This assumption deserves more attention
especially in the case of 2-d weakly disordered systems where A can become
very large.

Participation Ratio p

The participation ratio characterizes the fraction of space effectively
occupied by an extended eigenfunction, i.e., p = Ners/N; Nogs is the number
of atomic sites where y(r) is appreciable and N is {Ee total number of sites.
More precisely p is defined by

p-l = N glcn|4 (7

where |cp|2 is the probability of finding the particle at the site n. The
participation ratio appears in phonon-mediated self energies and interactions,
which in the static limit lead to an interaction part in the Hamiltonian of
the form

Hing ~ J lv(r)]%dr ~ -lN—p . (8)

It is worthwhile to point out that preliminary results based on the
potential well analogy [5] give for extended states that
)

_ @
P (9)

which combined with equation 8 lead to an enhancement of the lattice mediated
interaction by a factor of g/a‘. Equation 9 is consistent with numerical
results for p.

Fractal Dimensionality D

The quantity D can be defined if the integral of the probability density
|w(r)}2 within a sphere of radius L is proportional to LD with D independent
of L. For a disordered eigenfunction the result depends strongly on where the
center of the sphere is placed. To avoid this difficulty a weighted average
over all positions of the center is taken; the weight is the probability
density of finding the particle at each point. Thus the fractal
dimensionality is defined as the L independent exponent in the relation

A (L) = const LD (10)
where A(L) is the density correlation function
A(L) = [ dr v(p)|? [Fart el ? (11)

For uniform extended states the fractal dimensionality coincides with the
Euclidean dimensionality: D=d. Thus for extended states and L > £, D=d; as 2
result a non-trivial fractal dimensionality can be defined only in the range
a'<<l<<g. For localized states a fractal dimensionality can only be defined
for lengths less than the effective extent of the eigenfunction; beyond this
length, A(L) saturates approaching asymptotically one.
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Recently Soukoulis and Economou [1] have calculated numerically the density
correlation function A(L) defined by equation 11 in order to check whether a
fractal dimensionality could be defined for an eigenfunction in a disordered
system. Their numerical results strongly suggests that D is well defined for
length scales a'<<L<<x, £ and that D is a continuous, decreasing function of
the disorder. The most interesting case is for d=3 at the mobility edge, where
both A and £ are infinite. The fractal dimensionality at the mobility edge was
estimated [1] to be 1.7%0.3.

It is very interesting to check experimentally the fractal character of
wave functions in disordered systems. A possible probe might be the frequency
dependent conductivity o(w). In a 3-d disordered system where a mobility edge
exists for low frequencies (long times) we are going to see a regular behavior
of o(w) which is characteristic of uniform extended states. For high frequen-
cies (short times) we are going to probe the local behavior of the states which
are fractal like and therefore we will obtain a different frequency dependent
of o(w). 1 want to emphasize that the ideas are very speculative in nature.

The quantity D in addition to its ability to characterize quantitatively
the shape of the amplitude fluctuations may prove extremely important physi-
cally if it turns out that it can determine critical exponents for disordered
systems, as the ordinary dimensionality does for ordered systems.

RESULTS

Quantities like the average density of states, the mean free path L, the
quasi-free carrier conductivity oo, etc., can be calculated rather success-
fully by mean field theories most notably by the so called Coherent Potential
Approximation (CPA). The CPA has been employed both for simple model systems
such as tight-binding Hamiltonians and for realistic systems such as amorphous
semiconductors.
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Fig. 2. Mobility edge trajectory for a simple cubic tight binding model with a
diagonal disorder of rectangular shape and total width W. V is the
of f-diagonal nearest neighbor matrix element. The heavy solid line is
based on equation 14 while the dashed line is based on the L(E)-
method. The solid thin line is the CPA band edge.
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Recently Economou et al. [5] have shown that the problem of localization
in a disordered system can be approximately mapped into that of a bound level
in a shallow single potential well. The extent a of the equivalent well has
been taken as proportional to the mean free path g

A=y (12)
and the depth Vo of the equivalent well is proportional to 1/aoad

Vw1 o1 (13)

° aoa?; spd+l

For d=3, a bound level in a well appears only when the product Vqa?

exceeds a critical value. By analogy, in a 3-d disordered system, localized
states appear only when the dimensionless quantity S22 is less than a critical
value, which can be obtained by fitting the numerical value at the center of
the band of a simple cubic tight binding model [6,7]. The final result is
th$t the mobility edge in a 3-d disordered system is obtained from the simple
relation

s % 9. (14)
It is worthwhile to point out that for an energy E well inside a band, S is
proportional to a'-2 so that equation 14 gives 2 ~ a' as the localization
criterion in agreement with Mott's [2] proposal. On the other hand, for weak
disorder, the mobility is close to the band edge and S there is much smaller
than a'~2, This means that for weak disorder the eigenstates can become
localized while their mean free paths are considerably larger than the inter-
atomic distance.

In figure 2 we show explicit results based on equation 14 for the trajec-
tory of the mobility edge. The agreement with the results based on the L(E) -
method (see ref. [3]) is very impressive especially in view of the fact that
no adjustable parameters are present in the L(E) - method.

The single potential well analogy permits us to obtain the localization
length as well. For a 3-d system the result is

2
x = (20/S + Az f‘;l(lc. (15)

2
e - 2

Explicit results are shown in figure 3 together with the numerical data of
ref, [5]. The value of the constant A in equation 15 has .been adjusted. The
agreement is impressive,

For d < 2, a single potential well, no matter how shallow, always binds a
particle. By analogy in d-dimensional disordered systems with d < 2 all
eigenstates are localized; their localization lengths A can be obtained by
employing the analogy with the single potential well. For weak disorder in
the 2-dimensional case we obtain

A ~ const 2 exp [%i] (16)
where the constant, for E at the center of the band, is 2,72, and S = 4/2x (in
units of inverse lattice spacing). Explicit results are shown in figure 4
together with the numerical data of refs. [6] and [7]. Given that there is
only one adjustable parameter in the theory the agreement is very good except
for very weak disorder where the numerical data are systematically below the
theoretical results.
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Fig. 3. Localization length A (in
units of lattice spacing) Fig. 4. Localization length A (in
for the center of the band units of lattice spacing)
of a simple cubic tight for the center of the band
binding model with diagonal of a square tight binding
disorder of total width W. model with diagonal disorder
V is the off-diagonal matrix of total width W, V is the
element. The solid line is off-diagonal matrix element.
the result based on the The solid line is the result
single potential well analogy based on the single potential
and the dots are numerical well analogy and the dots are

data of ref. [6].

numerical data of refs. [6,7].

In the 1-d case the final result based on the single potential well

analogy is
A =28 .
One may argue that £ in equation

(17)
17 must be obtained from the geometric mean

of G (m,n) and not the arithmetic, because the former and not the latter is

representative of the ensemble.
becomes exact.

With this interpretation of gz equation 17
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SOME CONSEQUENCES

Wwe would like to conclude this brief presentation by pointing out two
cases, where the previous considerations lead in an elegantly simple way to
quite fundamental results.

The first case is that of small polaron formation, where the electron
immobilizes itself by statically distorting the lattice. As it has been shown
by Emin and Holstein [8], the formation or not of a small polaron is determined by
the competition of two opposing physical factors. A "repulsive" kinetic energy term
which scales as 1/L” and favors delocalization and an "attractive" lattice mediated
self-energy which is proportional to [|y|*dr and hence it scales as 1/L3 and favors
shrinkage of the wave function into atomic size. The disorder reduces the
"repulsive" term (by a factor of a'/min (L,£)) and enhances the “"attractive" term (by
a factor of £/a' for L > £). These modifications can be understood physically as a
result of the fact that the eigenfunction is not uniform, and it does not utilize all
available space. Hence, the energy to compress it is lower, while the self-energy
(being inversely proportional to the participation ratio) is higher. Thus the net
effect of the disorder is to facilitate polaron formation; the larger the £, the
easier it is to form polarons [9].

Another case where the length scaling of the kinetic energy is very important is
that of the tailing of the density of states N(E). Halperin and Lax [10] have shown
that N(E) behaves as

N(E) = exp [- |E| 2-9]. (18)

Eo 2
The factor 2 that divides the dimensionality d in the exponent is the same as
the exponent in the length scaling of the kinetic energy: 1/L2. In three
and higher dimensionality and for L < & the kinetic energy scales [11] as
1/L9. "Hence the exponent |E/Ey| in equation 18 must become 2-(d/d)=1 and the
DOS must be given by

N(E) = exp [- |E-|] s d>2. (19)
Eo
This naturally resulting exponential tail in the DOS may provide a convincing

interpretation of the exponential absorption edge appearing almost universally
in disordered systems.,

On the other hand, one can argue [12] that in 1-d we are almost always’ in the
regime, where the kinetic energy scales as 1/L2 so that

N(E) = exp [- 1E13/2] 5 d =1 (20)
EO

which is the exact result in 1-d.
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